
The Pascal Programming Language http://pascal-central.com/ppl/index.html

1 of 5 11/9/07 11:42 AM

The Pascal Programming Language
Bill Catambay, Pascal Developer

Updated: 9-5-01

The Pascal Programming Language
by Bill Catambay

Table of Contents

I. Introduction
About the Author
Origins of Pascal

II. The Pascal Architecture
Block Structure
Style
Manageability

III. Pascal Standards
Unextended Pascal
Extended Pascal
Object Pascal

IV. Myths Uncovered
Myth 1: C and Pascal Are Basically the Same Language
Myth 2: Pascal is Limited in Power
Myth 3: Pascal Has Weak String Handling Capabilities
Myth 4: Pascal Does Not Support Object Oriented Programming
Myth 5: Pascal is Only an Instructional Language
Myth 6: Pascal is Not For Serious Programmers

V. Pascal Today
Platforms
Compilers
Internet

VI. Summary
VII. Bibliography

I. Introduction

This paper is a review of the Pascal programming language. I will address the origin
of the language, discuss the architecture, and talk about the language standards for
unextended Pascal and Extended Pascal. I will confront the major criticisms of the
language, explaining the origin and inaccuracy of the many myths about Pascal.
Finally, I will address the Pascal implementations available today, comparing the



The Pascal Programming Language http://pascal-central.com/ppl/index.html

2 of 5 11/9/07 11:42 AM

different compilers and the different platforms on which Pascal is currently available.

My experience with Pascal dates back to the PDP-11, the system used at Santa
Clara University where I received my Bachelor of Science in Computer Science in
1984. During my college years, I learned and worked with several languages on
campus, ranging from FORTRAN to Pascal, COBOL to Assembly. Off campus, I did
extensive programming with BASIC (at home on my Radio Shack TRS-80 Model 1)
and APL (at Lockheed where I worked part-time). Before tackling the subject of
Pascal, I believe it's relevant to discuss my involvement with the language first.

About the Author

While attending college, I worked part time for Lockheed Missiles & Space where I
discovered APL (A Programming Language), a highly vectorized symbolic language 
that ran on an IBM mainframe computer. I originally dabbled in APL to write
programs that checked my school work in vector algebra and other math courses,
but as my knowledge of the language increased, so did my use of the language. I
took over a project previously slated to be written in COBOL (COmmon Business 
Oriented Language), and wrote the entire system in APL. As this project grew, it
wasn't long before I had my first painful experience of code maintenance. Unlike
school assignments which could be discarded after turning in, programs written for
business came with maintenance responsibilities. I would look at old code, and
would wonder what the code was doing, sometimes killing hours of my time. It
didn't matter how rigorously I commented my code, as there would always be some
code that was not commented or where the comments were not too clear, and I
would be clueless. Along with this new pain came a sense of doom associated with
change requests. In fact, I often re-wrote a program rather than update an existing
one in order to save time and sanity. In the beginning APL was fun, but it soon 
became obvious that it was not a good choice as a long term programming solution
for an on-going project.

Around this same time, my focus in college shifted, as I changed my major from
Math to Computer Science at Santa Clara University. One of my most memorable
lessons was from the class, Theory of Algorithms. This class stressed that the art of
programming was not the learning of a programming language, but the thought
process of taking real-life problems, finding a solution, translating that solution to
an algorithm, and finally converting the algorithm into working code. The professor
of my Data Structures class furthered that idea by stating that learning the basics of
a computer language could be accomplished in about two weeks, but the real work is
learning to use that language to design smart solutions to complex problems. 

After graduation, I entered the Graduate Engineer Program at Lockheed, and rotated
through different organizations performing a variety of tasks. I wrote missile 
guidance FORTRAN (FORmula TRANslation) code on a VAX computer, voice I/O 
RATFOR (RATional FORTRAN) code on a Data General computer, and I learned C
on a Sun workstation in support of missile guidance analysis. 

In 1986, I began to work full-time for Lockheed's missile production shops. Tasked
with my first project, a dynamic capacity planning reporting system, I abandoned
APL in favor of NOMAD, a high-level database language. NOMAD is a great language



The Pascal Programming Language http://pascal-central.com/ppl/index.html

3 of 5 11/9/07 11:42 AM

for reporting needs, and much easier to maintain than APL. However, as I 
discovered, NOMAD lacks much of the structured programming architecture that was
built into languages like C and Pascal, making it more difficult to implement
complex functionality.

In 1987, I was tasked with full responsibility of designing an entirely new
manufacturing system from the ground up. System requirements included
responsiveness, stability, flexibility, and ease of maintenance. Additionally, it would
operate in manufacturing production shops and would be used by the production line
flow assemblers, few of which had prior computer experience. Barcode technology,
batch processing of components, as well as an interactive link to a German-made
light-guided assembly machine all needed to be controlled by the system. This was
a crucial high profile system which would revolutionize the way the shop conducted
business, becoming an embedded production component upon which the shop would
heavily depend. 

After careful analysis of the system requirements, it was obvious that we needed
both a stable operating system as well as a versatile and highly maintainable 
computer language. We chose a dedicated VAX computer running VMS, and the
programming language Pascal. The applications needed to implement this system
were extremely complex and diverse, ranging from database management to
network interfacing with other company systems. Each application would have to be
extremely maintainable to support the changing dynamics of a production shop. Of
all the languages at our disposal, only Pascal and C afforded the versatility required;
however, only Pascal provided the maintainability.

In March of 1988, the system went on-line and was a tremendous success. As shop
floor personnel with little computer experience began to work with the system, new
ideas continually were inspired. There was an explosion of programming requests,
and the system expanded to manage work flow, traceability, hazardous materials
usage, shop supplies ordering, tool calibrations, and much more. The system grew to
interface with over a dozen other Lockheed systems, and eventually replaced most
of the paper processing in the shop, including the replacement of paper timecards
with an electronic timecard system. The system supports production shops in
Sunnyvale, California, and in Kings Bay, Georgia. 

There are many dynamics of the production shops that require a system to be rock
solid stable, and capable of easily evolving with ever-changing requirements. This
system, now over a decade old with a staff of just two programmers, has 
successfully done both. Very old applications are maintained and enhanced in a
timely manner, including programs written as far back as 1988. New applications are
implemented that provide new functionality, often requiring updates to existing
library functions while not breaking old code. Through all the changes, it was DEC
Pascal (now Compaq Pascal) that played a pivotal role in the success of this system.
It provided the required power and flexibility, while simultaneously affording a
structured language that helped prevent the system from becoming a maintenance
nightmare. It was the right choice then, and is still the right choice today.

In addition to the Pascal programming I do for Lockheed Martin, I also maintain
Pascal Central, http://pascal-central.com, a web site dedicated to Pascal 
programmers all over the world.

Programming language summary: APL, Assembly, BASIC, C, C++, COBOL, DCL, 
EXEC, FORTRAN, Javascript, NOMAD, Pascal, Perl, RATFOR.



The Pascal Programming Language http://pascal-central.com/ppl/index.html

4 of 5 11/9/07 11:42 AM

Origins of Pascal

The Pascal language was named for Blaise Pascal, a French mathematician who was
a pioneer in computer development history. In 1641, at the age of eighteen, Pascal
constructed the first arithmetical machine, arguably the first computer. He would
improve upon the instrument eight years later. In 1650, Pascal left the world of
geometry and physics, and shifted his focus towards religious studies, or, as Pascal
wrote, to "contemplate the greatness and the misery of man." Pascal died in Paris
on August 19, 1662. 

The earliest computers were programmed in machine code and assembly. This type
of programming is tedious and error prone, as well as extremely difficult to
understand and modify. Programming is a time-consuming and expensive process.
High level languages were developed to resolve this problem. High level languages
provide a set of instructions that read like English, but can be translated by a
program called a compiler into machine code. Pascal is one such language. 

Other high level languages developed in the early years of the computer were
FORTRAN (1957), COBOL (1959), ALGOL (1960), APL (1962), BASIC (1964), C
(1972) and Ada (1983), to name a few. One problem with many of the early
languages (e.g., FORTRAN and BASIC) was the heavy dependency on the use of
"goto" instructions. "Goto" instructions tell the computer to jump from one step to
another, enabling the computer to skip steps or to go back to repeat earlier steps.
This type of sporadic branching increases the difficulty of debugging code.
Additionally, languages like COBOL were designed with over-elaborate definitions,
weak data structures support, and a lack of flexibility, making programs tedious to
code and difficult to enhance. 

Niklaus Wirth completed development of the original Pascal programming language
in 1970. He based it upon the block structured style of the Algol programming
language. There were two original goals for Pascal. According to the Pascal Standard
(ISO 7185), these goals were to a) make available a language suitable for teaching
programming as a systematic discipline based on fundamental concepts clearly and
naturally reflected by the language, and b) to define a language whose
implementations could be both reliable and efficient on then-available computers. 

Pascal went far beyond its original design goals, with commercial use of the
language often exceeding academic interest. Pascal provides rich data structures,
including both the enumerated and record data types, and defined with a pleasing
and powerful clarity. It provided an orthogonal and recursive approach to data
structures, with arrays of arrays, arrays of records, records containing arrays, files of
records, files of arrays, files of records containing arrays of records, and so on.
Pascal's popularity exploded in the 1970's, as it was used in writing both system and
application software. For this reason, the International Standards committee decided
that a formal standard was needed to promote the stability of the Pascal language
(the ISO 7185 Pascal Standard was originally published in 1983). By the end of the
1970's, more than 80 computer systems had Pascal implementations in use. 

One of the more popular Pascal's of the 1970's and early 1980's was UCSD Pascal on
the UCSD P-System operating system. The UCSD P-System was developed at the 



The Pascal Programming Language http://pascal-central.com/ppl/index.html

5 of 5 11/9/07 11:42 AM

Institute for Information Studies at the University of California - San Diego, under
the direction of Kenneth Bowles. In fact, the P-System operating system itself was
written in UCSD Pascal. As Wirth writes in his 1985 Turing Award Lecture, From 
Programming Language Design To Computer Construction, "But Pascal gained truly 
widespread recognition only after Ken Bowles in San Diego recognized that the
P-system could well be implemented on the novel microcomputers. His efforts to
develop a suitable environment with integrated compiler, filer, editor, and debugger
caused a breakthrough: Pascal became available to thousands of new computer
users who were not burdened with acquired habits or stifled by the urge to stay
compatible with software of the past." 

In 1978, Richard Gleaves and Mark Allen, working on-campus in San Diego, used
UCSD Pascal to develop the 6502 interpreter which became the basis for Apple
Pascal. By the 1980's, Pascal was used by most universities to teach programming,
while still invading the commercial markets. It became so popular that even
FORTRAN began to change, taking advantage of Pascal's innovations. 

Due to the strong popularity of the Pascal language in system and application
software development, and in response to the many cited drawbacks of the original
Pascal implementation, an Extended Pascal evolved to address the needs of
commercial development. In 1990, the ISO 10206 Extended Pascal Standard was
published to support this new version of the language.

In addition to Extended Pascal, in 1986, Apple Computer released the first Object
Pascal implementation, a version of its Apple Pascal that supported object-oriented
programming. In 1993, the Pascal Standards Committee published an 
Object-Oriented Extensions to Pascal technical report which was based upon Apple's 
Object Pascal implementation.

Return to Table of Contents Next Chapter

Copyright © 2001 Academic Press. All Rights Reserved.


